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Properties of the two-dimensional random-bond6J Ising spin glass
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Department of Physics, University of Reading, Whiteknights, P.O. Box 220, Reading RG6 6AF, United Kingdom
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We develop an exact gauge-invariant method for studying the two-dimensional6J spin glass. It is applied
to the case of an arbitrary concentration of (12p) positive andp negative bonds and is thus a generalization
of the more commonly studiedp550% model. The ground-state properties are examined and in particular it
is shown that the spin correlation exponenth remains constant over the rangepc,p,50%. The value
obtained ish50.3460.02. A wide range of values forh is quoted in the literature. We indicate possible
reasons for the discrepancies and indicate that there are potential advantages in doing calculations at concen-
trations markedly lower than 50%.@S1063-651X~98!07708-3#

PACS number~s!: 05.50.1q, 64.60.Cn, 75.10.Nr
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I. INTRODUCTION

It is now more than 20 years since the introduction of
Edwards-Anderson Hamiltonian@1#, and this remains the ba
sis for most theoretical work on spin glasses,

H52(̂
i j &

Ji j s is j . ~1.1!

The Ji j are quenched random variables and thes i are Ising
spins on a lattice. The status of our understanding of s
glasses is covered in a number of reviews@2–5#. For infinite
range interactions@6#, the model is well understood; it ex
hibits a rich structure of states related by an ultrametric
pology@4#. The relevance of the mean-field results to mod
with short-range interactions is not clear, however.

One of the extensively studied models of a short-ran
spin glass is the6J system @7#. The model comprises
nearest-neighbor bonds of fixed magnitude but random s
with an equal probability for the sign being positive or neg
tive. In this paper we consider the two-dimensional gene
ized version of this model in which the signs can have d
ferent probabilities determined by a parameterp,

P~Ji j !5pd~Ji j 1J!1~12p!d~Ji j 2J!. ~1.2!

For p50.5, there is a phase transition at zero temperat
The properties around the transition have been studied
high-temperature expansions@8#, Monte Carlo simulations
@9–11#, and transfer matrix methods@12,13#. A value p50
in Eq. ~1.2! corresponds to the pure ferromagnet. Asp is
increased from zero, the ferromagnetic critical temperat
decreases and at a concentrationpc ferromagnetic order dis
appears. The best estimates putpc at about 0.11@12,14–17#.
There is evidence@18# that theT50 critical behavior exhib-
ited by thep50.5 system is maintained throughout the co
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centration rangepc,p,0.5. However, an exotic ground
state configuration~random antiphase state! at concentrations
just abovepc has also been proposed@19,20#.

TheT50 transition atp50.5 is characterized by algebra
ically decaying correlations between spins,

@^S0SR&2#av;R2h ~1.3!

with various estimates@9,12,21–23# of the value ofh. Scal-
ing theories of ‘‘droplet’’ excitations@22,24,25# indicate that
the 6J model constitutes a special universality class.

Two-dimensional Ising systems have the special prope
of allowing exact solutions—at least for large but finite sy
tems in the absence of a magnetic field. There have be
number of calculations of this type@26–29# and these are
generally based on the combinatorial or Pfaffian meth
@30,31#. Although the combinatorial method is applicable
both the Gaussian and the6J models, it takes a particularly
simple form for the latter. Saul and Kardar@26,27# develop
an algorithm using integer arithmetic, and study defec
low-lying excitations, and the zeros of the partition functio
in the complex plane.

An alternative approach based on the combinato
method was taken by Blackman and Poulter@28#. The focus
was on the Pfaffian matrix that allows the combinator
method to be expressed in closed form. It was shown t
particularly in the zero temperature limit, its eigenstates
hibit behavior that is ideally suited to characterizing t
physics of frustrated systems. In addition, the algorithm
ables certain quantities such as the ground-state free en
and entropy to be calculated exactly for very large lattice

These approaches are attractive methods for obtaining
act results at zero temperature, which is, of course, a diffi
limit to access by Monte Carlo methods. The added moti
tion for the work is the structure in the theory, which appe
to capture the essence of the physics of at least one cla
short-range frustrated systems.

In the present paper our earlier work@28# will be devel-
oped to study the two-dimensional6J model over the con-
centration rangepc,p<0.5. The theoretical development o
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which the method is based will be summarized in Sec. II, a
the results of calculations of the energy and entropy ove
range ofp will be given in Sec. III. Importance was attrib
uted to the spatial extent of the eigenstates of the Pfaf
matrix. This feature is explored in Sec. IV, and the relati
to correlations between spins will be developed in Sec.
There have been very few previous studies of the sys
away fromp550%. We evaluate the exponenth in Eq. ~1.3!
and show that it remains constant over the concentra
range frompc to 50%.

II. BACKGROUND

We summarize here the key features of the method.
reader is referred to the earlier paper@28# for fuller details.
New developments in the theory are given in this section
in Sec. V.

In the Pfaffian method, the partition function for the 2
Ising model on anN site square lattice is written@28,30,31#

Z52NF)̂
i j &

cosh~Ji j /kT!G~det D !1/2. ~2.1!

D is the Pfaffian matrix referred to in the preceding secti
Writing in terms of the skew-symmetric determinant rath
than the Pfaffian itself means thatD is the full square array
~of order 4N!. The elements ofD are either 0,61, or
6tanh(Jij /kT). We prefer to multiply all the elements byi so
that one is dealing with a Hermitian matrix and real eige
values. The determinant is, of course, unchanged.

The physics is contained inD and the formalism is appli-
cable to an arbitrary set of nearest neighborJi j . With frus-
trated systems there is a nice separation of the eigenstat
D into those associated with frustration and the rest. At z
temperature the decoupling is complete for the ‘‘frustrat
states’’ ~FS!. The number of FS is equal to the number
frustrated plaquettes and the FS are completely localized
the frustrated plaquettes. The FS occur in pairsua&6 i ub&
with eigenvalues6«.

This decoupling of the FS occurs for any two-dimensio
frustration model~e.g., Gaussian or6J!. For the6J model
there is further simplification because the eigenvalues of
FS can be written in theT→0 limit in the form

«5 1
2 X exp~22rJ/kT!, ~2.2!

wherer is an integer andX is a real number.
The change in ground-state energy and entropy resu

from the frustration can be written

DF52J(
f

1
r f , ~2.3!

S5k(
f

1
ln Xf , ~2.4!

where the notation indicates a summation over the posi
members of pairs of FS. Equivalent to Eq.~2.4!, of course, is
writing the ground-state degeneracyM as M5P f

1Xf . The
derivation of Eq.~2.3! is almost trivial whereas obtaining th
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apparently simple result in Eq.~2.4! involves some subtlety
@28#. The ground-state energyF for N spins is 22NJ
1DF.

In addition to the eigenvalues of the FS, it was postula
@28# that the form of the eigenstates themselves has phys
significance. There are indications that all FS are localiz
for p,pc while, for p.pc , a proportion of the FS is ex
tended. The detailed behavior abovepc relates closely to
physical properties such as spin-spin correlations.

One needs to take some care in the definition of the s
tial extent of the FS, and this point will now be developed
a more rigorous fashion. It is instructive to consider initia
a simple defect configuration in which only two frustrate
plaquettes are present. An example is shown in Fig. 1. In
case the ua& and ub& basis states are localized on th
plaquettes as indicated, and« is given by Eq.~2.2! with X
53.0 and r 53. The eigenstates corresponding to6« are
ua&6 i ub&.

It is reasonable to use the Manhattan distance as a m
sure of the extension of this pair of frustration states, nam
the sum of thex andy separation of thea andb plaquettes
~21153 in units of lattice spacings!.

To formalize this, we introduce operatorsx̂ and ŷ that
represent the coordinates of the plaquettes, and define ex
tation values

^ r̂ &5 z^bu r̂ ub&2^au r̂ ua& z, ~2.5!

wherer̂ is eitherx̂ or ŷ. The Manhattan spatial extentl then
is given by

l 5^ x̂&1^ ŷ&. ~2.6!

There is an ambiguity, however, due to an arbitrary ph
factor f. Eigenstatesua8&6 i ub8& defined as

ua8&6 i ub8&5exp~6 if!@ ua&6 i ub&] ~2.7!

would be equally valid in association with6«. Although for
simple configurations like that shown in Fig. 1, the phase
use is obvious by inspection, this is no longer true for
complex configuration of frustration at arbitrary concent
tion p. One needs a definition of spatial extent that is n
dependent on an arbitrary phase factor.

This difficulty is resolved if Eq.~2.5! is replaced by the
following definition:

FIG. 1. Example of an elementary two frustrated plaquette c
figuration to illustrate definition of spatial extension. Broken lin
are negative bonds anda and b label the frustrated plaquettes
Numbers indicatex andy separations.
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^ r̂ &5~P21Q2!1/2, ~2.8!

where P5^bu r̂ ub&2^au r̂ ua& and Q5^au r̂ ub&1^bu r̂ ua&.
The extensionl is now independent of the phase factorf and
the overall formalism is invariant with respect to gau
transformations. Further, the definition retrieves the intuit
definition of size in the limit of simple pairs of frustrate
plaquettes and no alpha-beta overlap.

III. ENERGY AND ENTROPY

Numerical calculations of the attributes of the FS can
done on large finite lattices. The procedure is one of deg
erate state perturbation theory. The small quantity that
pears in the perturbation expansion is exp(22J/kT). If the
perturbation theory is carried out to orderr max @the largest
value of r that occurs among the set of FS—see Eq.~2.2!#,
then anexact solution for that configuration of disorder i
obtained. Obviouslyr max will vary between configurations
but, for the sizes of lattice considered, it seldom is lar
than 12. Averages are performed over many configurati
of disorder. For further details about the implementation
the perturbation theory, see Ref.@28#.

Square lattices of sizeL3L were considered. Calcula
tions were performed withL564,128,256 and the results fo
the energy and entropy extrapolated to an infinite lattice
ing the forms

F~L !5F1aL21, ~3.1!

S~L !5S1bL21, ~3.2!

whereF(L) andS(L) are the values for anL3L lattice and
F and S are theL→` limits. The results obtained for a
selection of values ofp are shown in Table I. Between 30
and 1000 samples are used for each configurational ave
Estimates forp550% were reported previously@28#. There
is a minor change in the best estimate, which is due to
improved statistics used here, but the results are in ag
ment within the error bars.

We observe interesting behavior in the coefficientsa and
b in Eqs.~3.1! and~3.2!. For small values ofp botha andb
are negative. Asp is increased both become positive. T
change of sign occurs fora at around 15% while, forb, it is
at about 11%~i.e., at pc!. This behavior is presumably re

TABLE I. Ground-state energyF ~in units ofJ! and entropy~in
units of k! per spin for selected values ofp.

p ~%! F S

5 21.802460.0005 0.010360.0002
8 21.692460.0005 0.025260.0003

10 21.627460.0003 0.036360.0004
11 21.599460.0003 0.040560.0004
12 21.575060.0003 0.044060.0004
15 21.518260.0003 0.052860.0005
20 21.459060.0005 0.062060.0003
50 21.402160.0002 0.070960.0004
e
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lated to the transition from localized to extended states
cussed in the next section with the sign change inb exactly
matching the transition.

IV. EXTENDED AND LOCALIZED STATES

It was suggested earlier@28# that pc marks a transition
between localized and extended states. Our earlier work@28#
is now updated by the more rigorous definition of spat
extent given by Eq.~2.8!. Some modifications are found i
our earlier description, which produce a more complete p
ture. It is also suggested that the nature of these states in
p.pc regime relate to spin-spin correlation functions. Th
will be explored in the following section.

We find that, forp.pc , the distribution function for the
‘‘size’’ of the FS can be described by a power law chara
terized by an exponentr

N~ l !;L1L2l r. ~4.1!

N( l ) is the number of FS whose size is larger thanl for a
sample of sizeL13L2 . For a square lattice (L3L), the
number of FS whose size is comparable to that of the lat
is ;L22r. This approaches zero or infinity asL→` accord-
ing to whetherr.rc or r,rc , whererc52. We thus take
the conditionr,rc as the criterion for the presence of e
tended states while, ifr.rc , all states are localized.

The data forN( l ) are plotted in Figs. 2–4 for three value
of p ~50%, 20%, and 12%, respectively! and, in each dia-
gram, three values ofL ~64, 128, and 256!. The full lines are
least-squares fits to theL5256 data and are the best es
mates of the asymptotic behavior. The slope of the lines
the same for each value ofp within error bars. From this we
are able to deduce a value for the exponent in Eq.~4.1! of
r51.6660.02. This applies over the concentration ran
11.5%<p<50%. A number of other values ofp in this
range besides those displayed were checked to confirm
constancy.

FIG. 2. DistributionN( l ) ~normalized to a 2563256 sample
size! as a function ofl for p550% for samples withL564 ~3!,
128 ~1!, 256 ~h!. A straight line fit to theL5256 data points is
also shown.
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Figure 5 shows the data for four values ofp from 5% to
11%. It also shows the straight line fit at 50%~from Fig. 2!
and atp511.5%. This latter value ofp is the smallest for
which r51.66 applies. A small deviation can be observed
11%, for whichr51.7360.02, while at 10.5% a straight lin
fit is still possible withr51.91 but with much larger erro
bars. Forp<10.5%, a straight line fit is no longer feasibl
but clearly there is a fast fall-off inN( l ) with increasingl
and the states in this concentration range are certainly lo
ized.

The conclusion then is that we have extended states c
acterized by an exponentr of 1.6660.01 for p.pc , and a
transition from extended to localized atpc . The transition
occurs over a concentration range of about 1% aboutpc , and
is presumably a finite size effect.

Preliminary work@28# at p,pc indicated that the form of
Eq. ~4.1! applied there as well. The current studies, wh
take the work to larger values ofL, indicate that this is not
the case. Forp,pc , Tc occurs at nonzero temperatures a
there is no particular reason to expect special behaviorT
50 in this region.

FIG. 3. Same as Fig. 2 forp520%.

FIG. 4. Same as Fig. 2 forp512%.
t

l-

ar-

V. SPIN-SPIN CORRELATIONS

Much of the information about short-range spin glass
has been obtained by examining ‘‘droplet’’ excitation
@22,24,25#. One considers a closed contour in the lattice co
taining of the orderL2 spins; the effective block couplingJ8
on a length scaleL is obtained from the energy cost of re
versing all spins within that contour. In practice, the blo
coupling is usually studied by fixing the width of a strip an
evaluating as a function of length the energy difference
the system with two different boundary conditions. The6J
model is special and the issue to be studied in this cas
whether or not the block coupling is zero. One defines
probability PB(L) as the fraction ofL3L blocks for which
J8Þ0. Scaling arguments suggest thatPB(L);L2h, where
h is the exponent that characterizes the power-law deca
the zero temperature spin-spin correlation function in E
~1.3!.

A relation between the present work and the droplet
proach can be made as follows. As discussed in the pre
ing section, the mean number of extended frustration st
in an L3L region scales asL22r. We defineP(n,L) as the
probability that the number of extended states in the regio
n. Demanding that the probability function is normalized
unity and that the mean number is;L22r yields by the usual
scaling arguments

P~n,L !5L2~22r! f ~nL2~22r!!, ~5.1!

where f (x) is some analytic function ofx.
Now the occurrence of frustration extended over a reg

of size L3L is associated with multiple ground-state co
figurations, and there will be at least one contour that can
drawn of a similar size such that the energy cost of revers
spins within that region will be zero. This can be seen in
trivial example in Fig. 1. Obviously for largeL the details are
much more complex and involve the cooperative effect
many frustrated plaquettes. FS that are extended determ
the scale, however.

FIG. 5. DistributionN( l ) for L5256 samples as a function ofl
for p511% ~s!, 10%~1!, 8% ~3!, 5% ~n!. Straight lines obtained
from fitting L5256 data are also shown: upper~for p550%, as in
Fig. 2! and lower~for p511.5%!.
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Important for the present discussion is the converse of
situation. In the absence of extended states, there will b
energy cost in such a spin reversal. It is reasonable, th
fore, to expect thatPB(L) andP(n50,L) scale withL in the
same way. This leads us to make the identification

h522r. ~5.2!

It should be emphasized that we are not requiring the
sence of FS within theL3L region: simply the absence o
those whose size is;L. Smaller ones will influence the
magnitude of a concentration (p) dependent prefactor tha
will appear in Eq.~1.3!, but it is the extended ones that wi
determineh.

The conclusion of the present work then is thath50.34
60.02 over the concentration range 11.5%<p<50%. There
is also improved accuracy over our earlier result@28# for the
50% case. The only other work that we are aware of t
attempts to calculateh over this concentration range is th
of Morgenstern@18#. He uses Monte Carlo methods to obta
the spin correlations directly and also obtains a cons
value that, at 0.460.1, agrees with ours within error bar
With all other work in whichh is evaluated, the focus is o
p550%. Again within error bars, there is agreement w
McMillan’s @9# value of 0.2860.04. However, the other re
sults reported@10,22,23,26,27# are all around 0.2.

The reason for the wide range of values reported may
in the fact that nearly all of the calculations consid
p550%. Referring to Figs. 2–4, we see that the approac
asymptotic behavior is slower at 50%. For lower values op
~see Figs. 3 and 4!, there is an excellent straight line fit to th
data over the range ofL of 5–100. At 50%~Fig. 2!, however,
one has to get aboveL;30 before being in an asymptoti
regime. We attempted fits to a straight line over differe
ranges ofL and found for the lower values ofp, the calcu-
latedr was virtually independent of the range used. This
in sharp contrast to the behavior at 50%. For anL range from
;30 upwards, ther ~51.66! obtained was fully consisten
with its value calculated at the lower concentrations. Inclu
m

is
an
re-

b-

t

nt

ie
r
to

t

s

-

ing smaller values ofL in the fit, however, produced value
of r lying between 1.72 and 1.82. This would yield a corr
spondingh between 0.18 and 0.28 closer to values repor
by a number of other authors.

VI. CONCLUSIONS

The present approach is one of a number of exact meth
for treating the6J spin glass problem. Such methods a
complementary to the numerical transfer matrix and Mo
Carlo techniques, and together with scaling theories have
important role to play in providing an insight into the unde
lying physics of these systems.

Although the method will certainly not remain exact
attempts are made to include magnetic fields or to exten
to higher dimensions, developments can be made in the e
treatment of other short-range systems. There are of co
additional features within the6J model that we have ex
ploited fully here and in the previous work@28#.

The new work in this study is the exploration of the fu
concentration rangepc<p<50%. A range of values for the
exponenth have been reported by various workers atp
550%. In view of the comments in the preceding secti
concerning a possible reason for this discrepancy, it wo
be interesting to see what values would be obtained by a
native methods at concentrations other than 50%.

Preliminary calculations on a frustrated triangular latti
indicate a range of parameters over which a value ofr ~and
henceh! occurs that is similar to that obtained here. Th
will be further evidence for a distinct6J model universality
class.
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